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Abstract

A useful model for open chains of flexible bodies undergoing large rigid body
motions, but small elastic deformations, is one in which the equations of motlon are
linearized in the small elastic deformations and deformation rates. For slow rigid body

motions, the correctly linearized, or consistent, set of equations can be compared to

prematurely linearized, or inconsistent, equations and to "oversimplified," or ruthless,
equations through the use of open loop dynamic simulations. It has been shown that the
inconsistent model should never be used, while the ruthless model should be used whenever

possible. The consistent and inconsistent models differ by stress stiffening terms. These are
due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms.

In this paper we examine in detail the nature of these stress stiffening terms and conclude that
they axe significant only when the associated zeroth-order stresses approach "buckling"
stresses. Finally it is emphasized that when the stress stiffening terms are negligible the
ruthlessly linearized equations should be used.

I. Introduction

In a previous paper 1 it was suggested that a useful model for op.en chains of flexible
bodies undergoing large rigid body motions, but small elastic deformauons, would be one in
which the equations of motion are linearized in the small elastic deformations and
deformation rates. In that paper, it was pointed out that in order to obtain a consistently
linearized set of equations of motion it is necessary to make use of nonlinear strain-
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displacement relations, 2'3 nonlinear kinematic constraints, 4,5 or several nonlinear geometric
or motion stiffness terms appended to the incorrectly linearized equations of motion. 6.7 It is

easy to verify that equations of this type, linearized in only some of the states, do not
conserve energy.

A presumed goal of simplified equations of motion is to obtain accurate simulation of
actual system behavior with a minimum of effort. At present, there is no standardized

yardstick with which to determine how various simplified equations measure up. It has
been suggested 14 that those simplified equations which come closest to conserving energy
should be considered most appropriate. In that paper, it is shown how equations that contain
second order terms in the flexible states can be obtained from prematurely linearized velocity

expressions.4, 5 But these equations, while perfectly conserving energy, still lack the first
order terms (stress stiffening terms) that correctly model the physical nature of the system!

In light of this example it becomes clear that conservation of energy, while desirable for
numerical reasons, is not a good measure of the adequacy of a simplified set of equations of
motion.

Equations in which all nonlinear terms involving the flexible generalized coordinates
and their time rates of change are ignored have been termed "ruthlessly linearized". 1 The

correctly linearized, or consistent, set of equations was compared to prematurely linearized,
or inconsistent, equations and to the ruthless equations by means of open loop dynamics
simulations for the case of slow rigid body motions. It was concluded that the inconsistent
model should never be used, while the ruthless model should be used whenever possible.

We point out that the ruthless model conserves energy. This stems from the fact that the
ruthless model can be derived from a set of velocity expressions without any further

simplifications, i.e., no terms are dropped after forming the velocity expressions. This
ensures that the mass matrix remains positive definite for all possible trajectories.

The inconsistent model results from neglecting certain kinematic relationships
between the elastic deformation variables, or what is equivalent, to using linear strain-

displacement relations. This results in the absence of certain terms linear in the elastic
coordinates and rates. The missing terms have been identified as the so-called geometric
stiffness terms of certain rotational dynamics problems. These terms are also known as
stress or motion stiffness terms and are not limited to rotational forces. They result from a
combination of zeroth-order stresses and nonlinear strain-displacement relations in the virtual

energy expressions that result in terms linear in the strain (displacement) variables. 10,7.9

In the rest of the paper we consider the nature of the stress stiffening terms and their
role in the determination of simplified equations of motion. In section II we present the

general form of equations of motion for open kinematic chains of flexible bodies. The
ruthless model is then defined and it is shown how this model can be derived directly. In
section HI we consider stress stiffness terms: their derivation; the forces that give rise to

them; and their general form. An analytical example is provided using a two link flexible
manipulator. Finally, in section IV we consider the importance of these stress stiffening
terms for the formulation of equations of motion.
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II. Equations of Motion for Chains of Elastic Bodies

The equations of motion of an open chain of elastic bodies can be expressed quite

generally as: 8

MER (x , q) MEE Oc , q) c[ 0

0 x ,R
= +

KEg q .E FE <x 'q'x"u )
(la)

u = 4 (lb)

where x is a vector of rigid body generalized coordinates; q is a vector of the elastic
generalized coordinates; MRR, MRE, MER, MEE form the configuration-dependent mass
matrix; Ten is a vector of generalized external forces; KEE is a constant stiffness matrix and F
is a vector of nonlinear inertial (coriolis and centripetal) forces. Subscripts R and E denote
rigid and elastic, respectively.

We are often interested in the important class of systems for which the elastic
deformations remain small so we can ignore terms of second and higher order in q and u. In
this case, Eq. (1) can be expanded to show more explicitly the form of the nonlinear terms:

MRR(X,q) MRE(X) i 0 0 x

+ = +

MER(X) MEE (x) 4 0 Xb: E q T FEo(x,x" )

,[ x,Iq+E x]q
F E l(X .x" ,i) F E 2(x ,x') (2)

Notice in the above equation that we have lumped the terms in MEn that depend on q together
with the FEI term and have denoted the new term by FEI*.

In Eq. (2), the superscript * terms are the only terms that could contain
foreshortening terms, i.e., terms arising from the enforcement of kinematic constraints
among the flexible degrees of freedom of the elastic bodies. These terms, which can be
obtained equivalently by the use of nonlinear strain-displacement relations in the formation of
the inertial velocities of the bodies, are missing when linear strain-displacement relations are

used instead, i.e., when the equations are linearized prematurely.5, 6 In the case of a single
flexible body, the incorrectly linearized equations can then be fixed through the use of
"motion stiffness" matrices.7

27



II.A The Ruthlessly Linearized Model

In a "ruthJessly linearized" model, 1 we simplify the equations of motion for a chain of
flexible bodies by ignoring all nonlinear terms that involve the elastic generalized coordinates
and rates (q and u), including those terms in the mass matrix which depend on elastic
coordinates. In this case Eq. (2) becomes:

MER(X) MEE(x) 4 0 KEE q ,E FEo(X'X') (3)

As explained in Ref. 1, the ruthless model is a simplification of the consistently linearized
equations of motion motivated in part by the so-called rate-linear assumption. This
assumption consists in neglecting (coriolis and centripetal) terms nonlinear in the generalized
rates, dx/dt and u, for slow motion of the system. In the case of n-link rigid manipulators it

has been pointed out t2 that the velocity and acceleration terms of the dynamic equations have
the same relative significance at any speed of movement. This indicates that the rate-linear

assumption might not be a good one. On the other hand, terms that are nonlinear in the rigid
generalized rates and linear in q and u might be negligible for small q and u when compared
to similar terms that are constant in q and u.

Whereas the consistently linearized equations of motion are theoretically valid for
chains of flexible bodies undergoing fast rigid body motions, but small elastic deformations,
the ruthless equations can be said to be valid for chains of flexible bodies undergoing slow
rigid body motions and small elastic deformations. How slow these rigid body motions
must be is the subject of section IV. Notice that both models can accommodate large
configuration changes (kinematic nonlinearities), and that the distinction being made
concerns only the magnitudes of the time rates of change of the rigid body generalized
coordinates. In the next section, we examine how the ruthless equations of motion can be
obtained without having to start with the consistent equations. Before proceeding, however,
let us make some clarifications.

Up to this point, we have made little distinction between "rigid body motions" and
rigid generalized coordinates and speeds. In fact, what is meant by rigid generalized speeds
is the collection of generalized speeds that for each body characterize the motion of a frame of
reference from which the small elastic deformations are defined. The requirement of small
elastic deformations implicitly defines the frame. 2 More explicit frame definitions can be
made and the reader is referred to Ref. 13 for some examples. The point being made here is
that for chains of flexible bodies, the so-called rigid generalized speeds do not necessarily
correspond to rigid body motions, in the sense of a rigid body mode; and further whether
there is a correspondence or not will depend on the choice of reference frame from which the
small elastic deformations are described. This will be investigated further in section V when
we look at further simplifications of the ruthless model.
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II.B Direct Derivation of Ruthlessly Linearized Motion Equations

We are interested in finding a way to obtain ruthless equations without having to start

with consistent equations. From the form of Eq. (3), we see that what is needed is some
way of obtaining the mass matrix and the vector of coriolis and centripetal terms such that
there is no q-dependence or dq/dt -dependence. Clearly, this could be done formally by f'irst

obtaining the consistent equations and then dropping all terms containing q and dq/dt. Due to
the simplicity of the resulting equations, however, it seems that there should be an easier way
of obtaining Eq. (3). There is such a way, and this is in fact one of the advantages of using
ruthlessly linearized equations of motion. In the following we illustrate how to attain
ruthless equations for a collection of rigid and flexible bodies in a tree topology with no

closed loops.

The method is very straightforward and enables the dynamicist or control designer to
obtain the ruthless equations of motion for modest chains (as in, say, manipulator

applications) analytically. First, form the inertial velocities of the mass centers of the rigid
bodies, of points of application of external loads, and of characteristic material particles of
flexible bodies. These velocities should be ¢gnstant in flexible generalized coordinates,

though they must be linear in generalized speeds if there are to be any flexible equations of
motion. Next, form the partial velocities with respect to the generalized speeds. 11 Note that
the term partial velocities, coined by Kane, is a convenient way to describe partial
differentiation of the velocities with respect to generalized speeds, but its use here in no way
indicates that these results are exclusive to Kane's method. 11

The partial velocities should now be constant in both q and dq/dt, and we are ready to
form the mass matrix:

N

M <x)= v <x>v j<x m
,1 k=l k i (4)

where the subscripts i,j range over all degrees of freedom, rigid and elastic; N is the number
of bodies in the chain; Vk is the volume of the k-th body; and v_(x) represents the i-th partial

velocity of a material particle in body k.

In order to easily obtain the nonlinear velocity terms, we first define a pseudo-
acceleration. Form the acceleration for each of the inertial velocities previously defined.

Note that for purposes of forming the acceleration, the inertial velocities can also be made
constant in dq/dt. Once these accelerations are formed, further simplify.them by .dropping. all
terms that contain the second time derivative of any generalized coordinate or the nrst ume
derivative of the generalized speeds (since these terms have already been included in the mass
matrix above). The coriolis and centripetal terms axe now obtained by dot multiplying the

partial velocities with the corresponding pseudo-accelerations, ilk:
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N k
k _ drn

Fr(X ,x') = _' _ V r •
k=l k (5)

where the subscript r ranges over all degrees of freedom, and F is the vector of nonlinear
forces in Eq. (3).

The stiffness matrix can be obtained in a variety of standard ways. 5,1° Determination
of the load distribution matrix is achieved as in Kane's method by dot multiplying external

loads by the partial velocities (constant in q and dq/dt) of their points of application.

III. Nonlinear Strain-Displacement and Stress Stiffness

Enforcing geometric constraints on the generalized coordinates 5 is equivalent to
retaining nonlinear strain-displacement terms in a continuum mechanics formulation of the

equations of equilibrium. 9 It is for this reason that appending geometric stiffness matrices 6.7
to the incorrectly linearized equations of motion yields identical results, if done consistently,
to proper linearization through consideration of nonlinear geometric constraints on flexible

degrees of freedom.

As defined by Ref. 10, geometric stiffness terms are used to account for second order
terms in the energy expressions that result in trtrst order effects in the motion equations but
which are ignored in a premature linearization formulation. In the context of the finite
element method, stresses resulting from all applied external forces are found and the virtual
work they effect through the nonlinear terms of the strain expression is found to contribute
linear stiffness terms that are critical in stability analysis. This has been recognized by users
of finite element codes for some time, in particular as it relates to the inertial forces impressed
on rotor blades by "constant" spin rates. The fact that all external, internal, and inertial
forces should be taken into account when obtaining the stress resultants has perhaps not been
made clear in all engineering applications. While some or all of these forces might be

unimportant for particular applications, it remains true that for general, particularly dynamics,
applications all forces should be considered.

In their paper, for the case of the free motion of a single flexible body, Banerjee and
Dickens (Ref. 7) consider only forces due to impressed motions, or inertial forces. They
extend the concept of geometric or stress stiffness matrices by considering time-varying
inertial forces. This is achieved (see also Ref. 9) by obtaining the geometric stiffness
matrices assuming unit values of a set of 21 inertia loads taken one at a time and using a
standard finite element code. Invoking linearity, they then pr-oceed tomultiply each motion

stiffness matrix by the instantaneous value of the associated inertia load and to add the
resulting matrices together at each instant in time.

The above procedure results in an additional stiffness term being added to the flexible
partition of the inconsistently linearized equations (Eq. (2) with the superscript * terms
lacking foreshortening terms):
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21 [k )

ggq =- _ S Akq
k =1 (6)

Kg above is the generalized motion stiffness for a single flexible body and S(k) is the
geometric stiffness matrix corresponding to unit values of the k-th inertia loading, Ak, with
the other inertia loadings set to zero. The Ak in Eq. (6) are defined as follows: 7

A 1 = U'l+ u5u 3 - u6u 2

A2= u'2+ u6u 1- u4u 3

A3= u'3+ u4u 2- u5u 1

a,=(q+
A5= u'6+ u4u 5

A6=-u'5+ u6u 4

A7=-u'6+ u4u 5

2+ u4A8 = - u 6

A9= u'4+ u5u 6

A10 = u'5+ u6u 4

A 11 = -u'4 + u5u6

(u 212+ u4A 12 = - 5 (7)

where for simplicity we have ignored rotary inertia effects in the flexible body, thus setting
Ak for k=13 to 21 equal to zero (see Ref.7). The ui (i=1 ..... 6) are the generalized speeds

characterizing the motion of a frame of reference attached to the body and are defined as: 11

o
u.=v .b., i =1,2,3

l |

_to B .b i = 1,2,3
ui +3 i ' (8)

where O is the origin of the flame B (bl,ba,b3) attached to the flexible body; v ° is the inertial

velocity of O; and o_ is the inertial angular velocity of B.

The above methods rely on a finite element analysis in which the displacement

interpolation functions are nonlinear. 19 This is equivalent to considering nonlinear strain-
displacement relations in a continuum formulation. Notice that a proper finite element code is
capable of generating the correct results (i.e., a formulation of the equations of motion that
contains all the motion stiffness terms) without any tampering, but at a high computational

cost (see, e.g., Ref. 15). The method of Banerjee and Dickens can be likened to a
preprocessing of the equations so that motion stiffness matrices are computed only once.
This yields large savings in computational cost.

It is clear that a similar process is viable for all loadings that generate zeroth-order
stresses, including joint interconnection forces for chains of flexible bodies. Wallrap and
Schwertassek 15 show how this can be done for each body in a chain. Their method requires

knowledge of interconnection forces at each instant in time, however, and these depend in
general on acceleration terms. The motion equations thus can become implicit in the
accelerations. Kim 16 proposes an iterative solution approach for the interconnection forces
which they claim converges in very few iteration steps at each integration time step. The
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iteration is started with some a priori guesses for the accelerations. Their method does not

require updating the mass matrix at each iteration step.

III.A Possible Stress Stiffness Matrices

As mentioned earlier, all zeroth-order forces (which will result in zeroth-order

stresses) can potentially generate stress stiffness matrices. Consequently, the following
forces must be considered:

1)

2)

3)

applied loads,

gravity loads,

motion-induced forces: both body inertial forces and interconnection forces.

The general form of the resulting stress stiffness matrices is given by:

where (.)ij represents the partial derivative in thej-th direction of (.) in the i-th direction.

III.B Two-Flexible-Link Arm Example

In Ref. 3 the consistently linearized equations of motion for a planar, revolute, two-
flexible-link manipulator arm are derived. Nonlinear strain-displacement relations for a bar
are used in the modelling of each link as a Bernoulli-Euler beam. The resulting equations
contain all terms linear in the flexible coordinates and their time rates of change. In

particular, the stress stiffness terms are included in an implicit way. In this section we
rewrite these terms due to the nonlinear strain-displacement relations (also dubbed

foreshortening terms) and show explicitly that they indeed possess the general form shown
in the previous section.

The transverse link displacements ui and u2 of the shoulder and elbow links,

respectively, are discretized using an assumed modes expansion:

U 1 = Y.lgPi.= ( X )qi (t)

rn

u 2 = Y_ Wi(Y )Pi (t)
i--1
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Theabsoluteshoulderangular position is given by 0, and the relative angular position of the

elbow is given by/3.

For the shoulder link, two zeroth-order forces yield stress stiffness matrices.
f'trst one is due to the body distributed centripetal load:

[ mill fttcb/cb/dx t't, x2dp/tb:dx]02
" -J0 J

The

The second stress stiffness matrix is due to the axial component (along the neutral axis of the
undeformed shoulder link) of the interconnection force at the elbow joint:

In the above equations Pl and P2 are the mass per unit length of the shoulder and elbow

links, respectively, and ml=plll, m2=p212 are the respective link masses.

The stress stiffness matrices for the elbow link can be considered to be due either to

the inertial body forces, or to the axial component (along the neutral axis of the undeformed
elbow link) of the interconnection force at the elbow joint:

m212 t2 /:,I,-[ -Io.,.> ]

[Kc2]t7 " [m2fot_:i_//dY - fot2p2y_:_//dy]11[-sin(_)O÷cos(_)O_

IV. Relative Significance of Stress Stiffening Terms

Returning to the question of simplified equations of motion, it is natural to ask when,
and if, these stress stiffening terms are important. In fact, whenever these terms are
important, a consistent formulation of the equations of motion is mandatory in order to model
the physical system. In this case, no further simplifications are possible, beyond the
linearization in the flexible states. It was shown in a previous paper 17 that ruthlessly
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linearizedequationsarevalid (i.e., accuratelymodel thesystem),preciselywhenthesestress
stiffnesstermsarenegligible. Furthermore,it canbesurmisedfrom thedetail term by term
comparisonsmadein that paper that stressstiffnesstermsare significant only when the
appropriate zeroth-order stress is comparable to the buckling stress, i.e., when the
correspondingload approachesthe buckling load for the structure. This canbe surmised
furtherby consideringa staticstability analysisandcomparingwork dueto loadingstresses
with elasticenergy(seefor exampleRefs.10and18).

VII. Conclusions

The form of ruthlessly linearized equations of motion for open chains of flexible
bodies was presented. A method was outlined that allows for the easy determination of the
ruthless equations of motion for a given system. We discussed the derivation of stress
stiffness terms which result from nonlinear strain-displacement relations and zeroth-order
stresses. These terms are needed to obtain a consistently linearized set of equations. The
form of these terms was provided and it was shown that all zeroth-order loadings, not just
body inertial loadings, need to be considered when determining the stress stiffening terms. It
was pointed out that these terms are significant only when the associated stresses reach the
level of buckling stresses. This coincides with the previously investigated limits on the
validity of the ruthless equations of motion. It is concluded that ruthlessly linearized
equations of motion should be used whenever stress stiffening terms are negligible.
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